Using Industrial Sources of CO$_2$ for Value-Added Geologic Sequestration

Challenges & Approaches

Timothy R. Carr
KU Energy Research Center
Kansas Geological Survey
University of Kansas
Perhaps integration of energy systems represents too many complexities for standard business approaches and regulatory regimes.
Kansas Approach

- Inventory & Evaluate Greenhouse Gas Resources
 - Multiple Scales (Nation – Regional – Local – Single Source)
- Inventory & Evaluate Sequestration Opportunities
 - Multiple Scales (Nation – Regional – Local – Wellbore)
- Guiding Principles
 - Economically Viable
 - Environmentally Sound
- Integrated Energy Systems
 - Ethanol Plants
 - Landfills
 - Cement Kilns
 - Fertilizer Plants
- Viewing CO₂ as a Resource
 - Path to the Future ⇒ IGCC ⇒ Carbon Management
January 5, 2006

Kansas State Seminar

total GHG Emissions 6,873 Million Metric Tons

Data: Year 2002 Energy Information Agency and Renewable Fuels Assos.

Kansas State Seminar

January 5, 2006
NatCarb – Inventory & Evaluate

Carbon Resources
NatCarb – Inventory & Evaluate

Sequestration Opportunities

Brine Data Selected

<table>
<thead>
<tr>
<th>Location Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>State: Nevada</td>
</tr>
<tr>
<td>County:</td>
</tr>
<tr>
<td>Location: TS, R, Sec.</td>
</tr>
<tr>
<td>Formation:</td>
</tr>
<tr>
<td>Depth: 5934</td>
</tr>
<tr>
<td>Data Source: NETL 26702</td>
</tr>
<tr>
<td>Sample Date:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH: 7.69999981</td>
</tr>
<tr>
<td>Temperature: °F</td>
</tr>
<tr>
<td>Specific Gravity:</td>
</tr>
<tr>
<td>Resistivity (Rw):</td>
</tr>
<tr>
<td>Rw at 75 deg.:</td>
</tr>
<tr>
<td>Estimated Rw at 75 deg:</td>
</tr>
<tr>
<td>Total Dissolved Solids: mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individual Chemical Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium/Potassium: mg/L</td>
</tr>
<tr>
<td>Sodium: 596 mg/L</td>
</tr>
<tr>
<td>Calcium: 18 mg/L</td>
</tr>
<tr>
<td>Magnesium: 8 mg/L</td>
</tr>
<tr>
<td>Iron: mg/L</td>
</tr>
<tr>
<td>Chloride: 142 mg/L</td>
</tr>
<tr>
<td>Sulfate: 180 mg/L</td>
</tr>
<tr>
<td>Bicarbonate: 1240 mg/L</td>
</tr>
<tr>
<td>Carbonate: mg/L</td>
</tr>
<tr>
<td>Bromine: mg/L</td>
</tr>
<tr>
<td>Iodine: mg/L</td>
</tr>
<tr>
<td>Hydrogen Sulfide: mg/L</td>
</tr>
</tbody>
</table>

This server is run by the Kansas Geological Survey for NatCarb, a project funded by the U.S. Dept. of Energy’s National Energy Technology Laboratory. Programs Updated Nov. 11, 2004. The URL for this page is http://www.natcarb.org/Group/index.html. Comments to webadmin@ku.edu
Russell, Kansas Project

First Sequestration of Agricultural CO₂

Russell is centered in oil, grain and cattle region
Integrated Energy Systems

Raw Materials
- 9.5 million bushels milo
- Wheat gluten plant
- Gas fired co-generation

Ethanol Plant
- 2.7 BCF (145k metric tons)
- 7.5 mmcf/d
- CO₂ Pipeline

Products
- 500 MBO
- (68.5*10^3 tonnes)
- 48 million gallons ethanol
- 182 million liters
- Feed Pellets for 192,000 head

1 metric ton CO₂ = 19 mcf

- One Bushel Milo
- Heat
- Water

Fermentation
- 10 liters Ethanol
- 8.4 kg Carbon Dioxide
- 8.2 kg Cattle Feed (DDG)
CO2 Miscible Flood Demonstration

- 10+ acre, three-spot
- 1 CO₂ injector
- 2 Producers
- 1 Monitoring
- 2 Containment Water Injectors
- 0.29 BCF (15,263 tonnes) CO₂ Injected-WAG
- 6 year operating life
- 18,000 BO (2466 tonnes) estimated recovery

www.kgs.ku.edu/ERC/CO2Pilot
Boevau Canyon, NE
Field-Scale Demonstration

- 14 CO2 injection Wells - 16 Producers
- Ethanol 36 → 45 MGY (136 → 170 M liters)
 - Corn & Milo 17 Million Bushels
 - (432 Million kg)
 - 137 metric tons (Mt) DDG
 - 172,000 Head of Cattle
- 300 → 375 Mt/day (5.6 → 7.0 mmcf/d)
- Verification and Carbon Credits
• InSAR Coverage
 – Coverage, 1992 to present
 – Green Frame shows areas with >20 scenes
 – Monitor mm-scale deformation
Major Kansas GHG Sources

Russell Project

Deffenbaugh

Fredonia

Coffeyville

Oil and Gas Fields
- CBM
- Oil
- Oil & Gas
- Gas

Industry
- Cement
- Power
- Ethanol
- Ammonia
- Refinery
- Landfills
Landfill Gas

Landfill Gas (LFG)
- 9.3% US Greenhouse Gas Emissions
- 8.1 Million Metric Tons CH₄
 - 4.9 Million Captured
 - 2.4 Million Flared
- Subsidy $1.09 mcf ($0.04 m³)

Capture Costs
- 12-15 Cents/Kwh (3600 kJ)
 Assuming 33% efficiency

Deffenbaugh Facility
- LFG 4.5 mmcf/day (236 t/d)
 CO₂ equiv.
 54 mmcf (2842 t/d)
- CH₄ sold 1.8 mmcf/d (95 t/d)
- 116 tonnes CO₂ and NMVOC vented per day
Deffenbaugh Facility

- 18 Mt of Waste in Place
- Additional 1.5 Mt per Year Received
- LFG 4.5 mmcf/day (236t/d)
 - 150 Wells
 - Gathering System
 - 7 miles of 22” pipe under 45” of water vacuum
- CO₂ (GHG equiv.) 54 mmcf/d (2842 t/d)
- CH₄ recovery 2.5 mmcf/d (132 t/d)
- CH₄ sold 1.8 mmcf/d (95t/d)
- 116 tonnes CO₂ and NMVOC vented per day
Trash Cell (ready to take waste)
Landfill Gas Well
Landfill Panorama
(showing gas plant & drill rig)
Landfill Gas
Adsorption Isotherms

- Nitrogen
- Methane
- CO₂

Graph showing adsorption isotherms for Nitrogen, Methane, and CO₂ under varying pressures (psia). The graph includes data points and lines representing different models such as LRC and ZGR.
Landfill Gas

Landfill Gas (LFG)
CH₄, CO₂, NMVOC

Pipeline

Unmineable Coals

CH₄

CO₂
Landfill Gas & CBM Basins

COAL BASINS and COALBED GAS RESOURCES OF THE U.S.A.

- **Yellow**: lignite
- **Orange**: sub-bituminous coal
- **Dark Brown**: bituminous coal
- **Red**: anthracite

Basins and Resources
- **Greater Green River**: 314 TCF
- **Wind River**: 6 TCF
- **Big Horn**: 3 TCF
- **Powder River**: 39 TCF
- **North Central Coal Region**: 4 TCF
- **Hanna/Carbon**: 15 TCF
- **Illinois**: 21 TCF
- **Denver**: 1 TCF
- **Forest City**: 1 TCF
- **Raton**: 10 TCF
- **Uinta**: 10 TCF
- **Piceance**: 10 TCF
- **San Juan**: 84 TCF
- **Fort Worth**: 7 TCF
- **Arkoma**: 4 TCF
- **Warrior**: 20 TCF
- **Arkoma**: 4 TCF
- **Cahaba/Coosa**: 1 TCF
- **Richmond/Deep River**: 1 TCF
- **Valley coal fields**: ? TCF
- **Pennsylvania anthracite fields**: ? TCF

Additional Resources
- **Northern Appalachian**: 61 TCF
- **Michigan**: 15 TCF
- **Arkoma**: 4 TCF
- **Northern Appalachian**: ? TCF
- **San Juan**: 84 TCF
- **Ft. Worth**: 7 TCF
- **Gulf Coast**: 7 TCF
- **Arkoma**: 4 TCF
- **Warrior**: 20 TCF
- **Cahaba/Coosa**: 1 TCF
- **Richmond/Deep River**: 1 TCF
- **Valley coal fields**: ? TCF
- **Pennsylvania anthracite fields**: ? TCF

Notes
- CBM stands for Coal Bed Methane
- **Deffensaugh Landfill**
Major Kansas GHG Sources

- Oil and Gas Fields
- Industry
- CBM
- Oil
- Oil & Gas
- Gas
- Cement
- Power
- Refinery
- Ethanol
- Ammonia
- Landfills

Locations:
- Russell Project
- Deffenbaugh
- Fredonia
- Coffeyville
Southeast Kansas

Partially miscible and immiscible CO₂ EOR

- El Dorado
- Salyards Trend,

Enhanced Coalbed Methane (N₂ and CO₂)

Cement plant gas stream may be best suited for ECBM
Cement Production

Dry Kiln Portland Cement Process

Calcination Process
CaCO₃ > CaO + CO₂
0.51 tonnes CO2 / tonne cement

CO₂ and N₂ kiln gas mix may be suitable for ECBM with little processing
Fredonia Flue Gas and Potential SE Kansas Markets

Present Composition

<table>
<thead>
<tr>
<th>% Weight</th>
<th>% Dry Weight</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂ 47.3%</td>
<td>N₂ 61%</td>
<td>69%</td>
</tr>
<tr>
<td>H₂O 22.6%</td>
<td>CO₂ 25%</td>
<td>18%</td>
</tr>
<tr>
<td>CO₂ 19.3%</td>
<td>O₂ 14%</td>
<td>13%</td>
</tr>
<tr>
<td>O₂ 10.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.8%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

682 tons/day at 332° F (167° C)

Enhanced Coalbed Methane (ECBM)

<table>
<thead>
<tr>
<th>% Dry Weight</th>
<th>Volume</th>
<th>Annual Vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂ 46%</td>
<td>57%</td>
<td>8.1 BCF</td>
</tr>
<tr>
<td>CO₂ 50%</td>
<td>39%</td>
<td>5.7 BCF</td>
</tr>
<tr>
<td>O₂ 4%</td>
<td>4%</td>
<td>0.6 BCF</td>
</tr>
</tbody>
</table>

Dehydrate

Reduce

Direct or Modified Co-generation

400°C

Kiln Gas CO₂, N₂, ?

CH₄ Pipeline

Kiln Gas CH₄, CO₂, N₂, ?

Pipeline
Cement Plants and Coal Basins

Modified from Portland Cement Association 12/98 map
Coffeyville Resources
Coke to H_2 Gasification Plant for Ammonia & CO_2
Coffeyville Coke Gasification to Ammonia Project

Air Separation Unit

Ammonia Synthesis

Ammonia

UAN Plant

NH3 Product

UAN Product

1000 t/d

1650 t/d

CO2 Purification

CO2 Vent

2100 t/d

CO2

PSA

75 mmscf/d

630 t/d

Raw H2

Raw CO2

Syngas Scrubbing

Tail Gas

CO Shift / Gas Cooling

SELEXOL

Acid Gas

Sulfur Recovery

Coke Grinding / Slurry Prep

Petroleum Coke

1000 t/d

Metric tons
Southeast Kansas

Miscible, partially miscible and immiscible CO₂ EOR
- El Dorado
- Salyards Trend
- Oklahoma

Enhanced Coalbed Methane (N₂ and CO₂)

Oil and Gas Fields

Oil & Gas

Industry

Ethanol
Ammonia
Power
Refinery
Oil & Gas Fields Plus Coal Basins
Greenhouse Gas Resource

- **Ethanol** – 10.3
- **Land Fill Gas** – 182
- **Energy Methane** – 252
- **Electric Generation** – 2250
- **Non-Power Industrial Commercial & Residential** – 1,565
- **Transportation** – 1850
- **Industrial Processes** – 114
 - **Cement** - 43
 - **Fertilizer** – 39
- **Agricultural Methane** – 183
- **Nitrous Oxides** – 333
- **HFC, PFC, SF₆, etc.** – 121

Total GHG Emissions 6,873 Million Metric Tons

Data: Year 2002 Energy Information Agency and Renewable Fuels Assos.
FutureGen
Challenges

Size and Scope of Sequestration

1 Million Metric Tons Per Year

- 50 MMCF/Day (2650 tonnes/day)
- 124 kWh/tonne to compress and deliver (1,500psi or 10,000 kPa) (446,000 kJ/tonne)
- $300K per mile (1.6km) of pipeline

Approximately 200 Injectors

- 3.5 Producers per Injector
- Capital Costs $60 MM
- Additional 3.8 Million BO/D (520,000 tonnes/D)
Potential Energy Systems

Opportunities and Challenges

U.S. Ethanol Facilities

Russell Plant

ETH A N O L Industry Outlook 2001

Modified from Portland Cement Association 12/98 map

Cement Plants
- Lafarge
- Other

Coal Basins
- ECBM Projects
Approach

- Expand the number and type of carbon sequestration opportunities in Kansas
- Lower the cost and optimize the value-added benefits associated with CO$_2$ storage
- Develop field and carbon management practices to minimize seepage and promote permanence
- Develop capability to assess capacity for carbon storage