Geologic Carbon Sequestration Opportunities in Kansas

Martin K. Dubois CAP CO2, LLC

martin.dubois@cap-co2.com

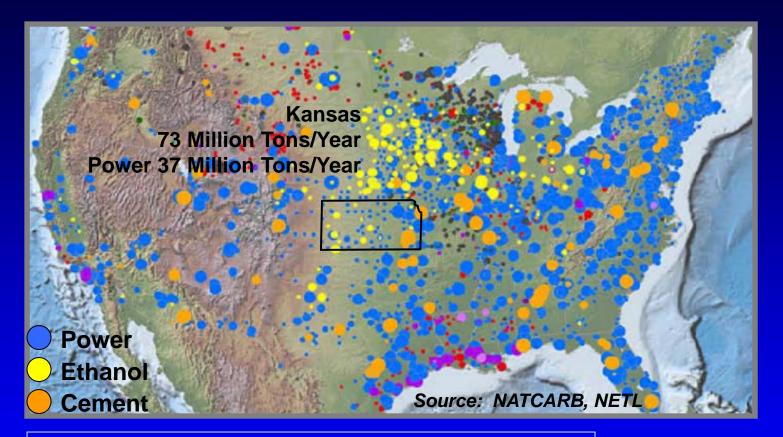
CAP CO2's focus is the use anthropogenic CO2 for enhanced oil recovery, with concurrent carbon storage.

Outline – Growing Opportunities

- 1. Geologic sequestration
 - A key alternative
 - Costs
 - Kansas geology suitability and capacity
 - Kansas projects
- 2. Interim solution: Concurrent Enhanced Oil Recovery (EOR) and Carbon Capture and Storage (CCS)
 - "Green" oil with industrial CO2
 - Technical requirements
 - Kansas opportunities and economic impact

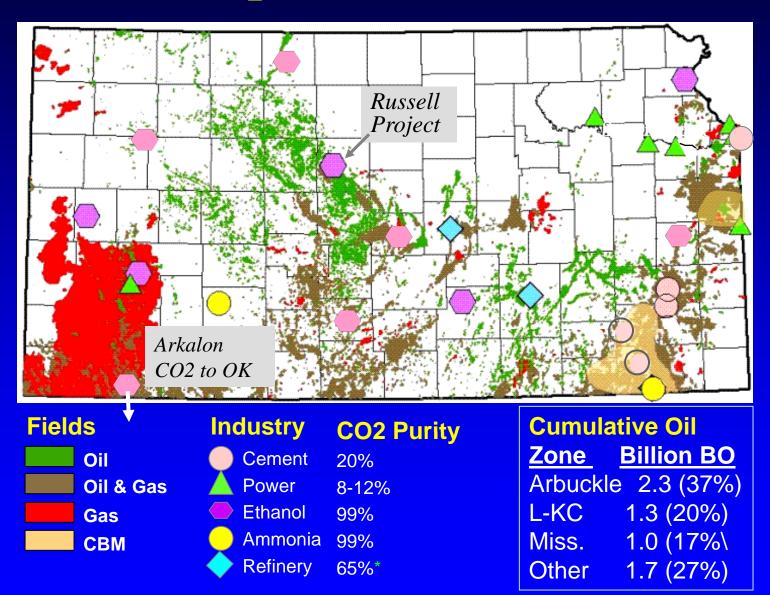
CO_2 Basics

- 1 ton $CO_2 = 17.2 \text{ mcf}$
- 1 metric ton = 19 mcf
- An average human exhales 6 mcf CO2/ yr
- Combustion of 1 barrel of oil yields 8 mcf CO2
- 7 mcf CO2 / BO (Net utilization: Sequestered)
- Ethanol (55mgy) 8.3 mmcfd, 0.16 million tonnes/yr (1-2 mbopd) •
- Coffeyville fertilizer plant 40 mmcfd, 0.8 million tonnes/yr (6-8 mbopd)
- New Sunflower 895 MW plant deal 6.7 million tons/yr

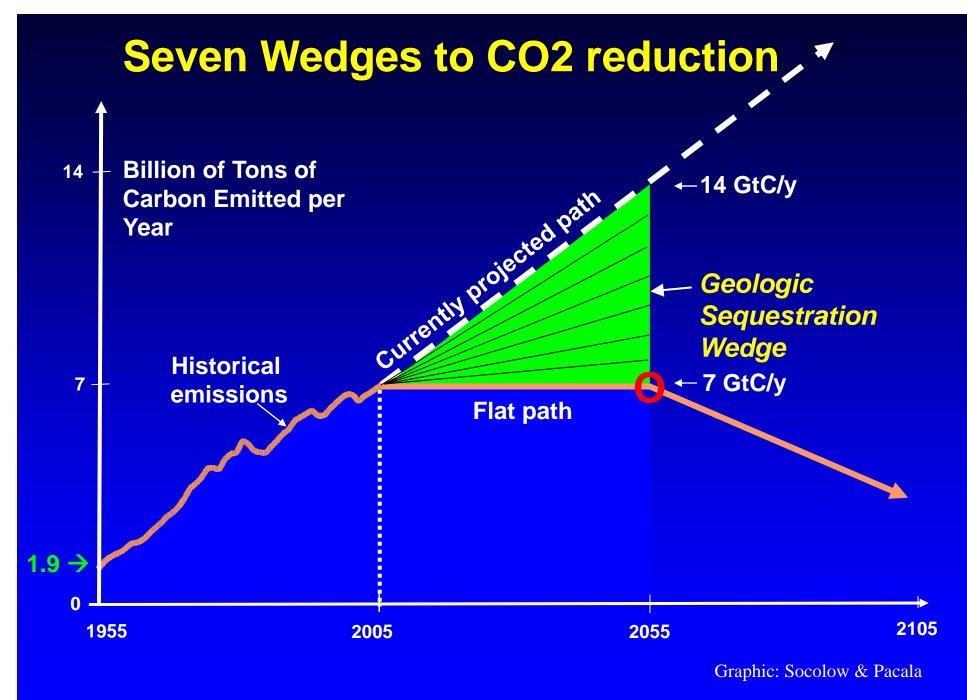

Handy CO2 properties calculator: http://abyss.kgs.ku.edu/pls/abyss/nat carb.co2_calc.co2_prop

KSU – CHE 670 January 7, 2010

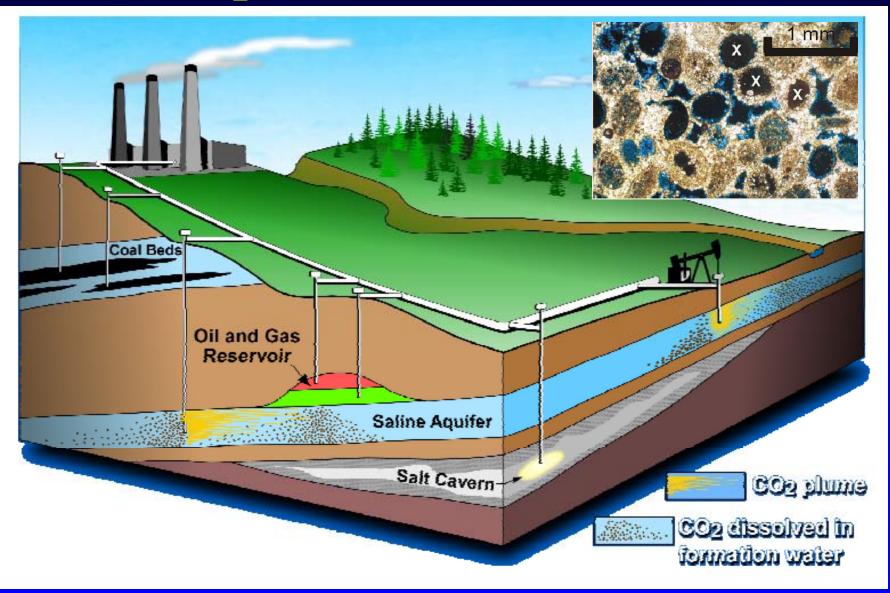
Kansas:


- Total 72.8 Million Metric Tons/Year
- Coal-fired Power 37.2 Million Metric Tons/Year

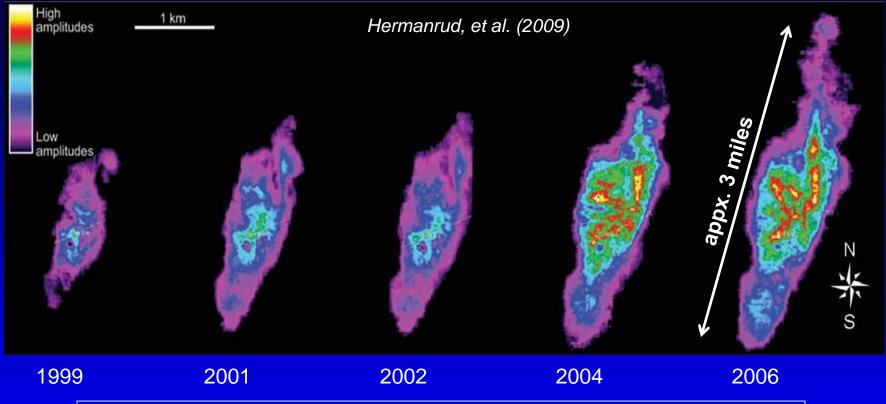
US Stationary CO2 Sources


- **Carbon legislation**
- + Carbon capture
- + Need for geologic storage
- + CO2 pipeline infrastructure
- = Opportunity for CCS and CO2 EOR in Kansas

Kansas CO₂ Sources and Oil Resource

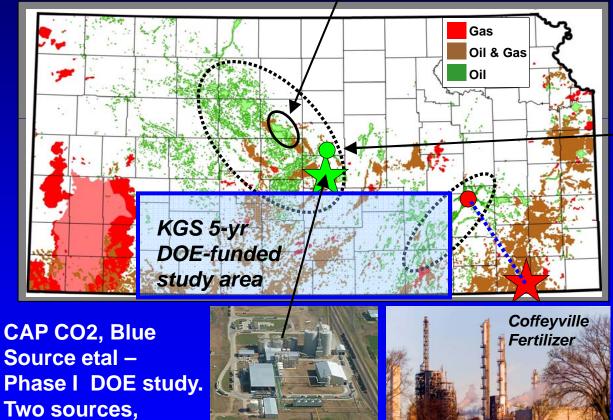


KSU – CHE 670 January 7, 2010


* gasification for desulphurization

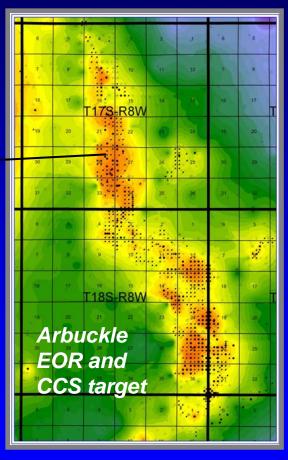
CO₂ Geologic Sequestration

Compare scale of Arbuckle with Sleipner



- Accumulated total reflection amplitude from all nine layers of the Sleipner CO2 plume.
- I am not sure how much had been injected in 2006, but as of 2008 ~10 M tons had been injected.
- Sleipner project is about the size of some Arbuckle "domes" on the CKU.

KGS and TORP (KU) - successful Russell CO2 pilot project (99-09)



Kansas CO2 EOR and CCS studies and proposed projects

Kansas

Ethanol

Geneseo-Edwards field could store >8.5 million tons CO2

KSU – CHE 670 January 7, 2010

multiple sinks

Arbuckle injection rates and sequestration

Injectivity Documented

- 2000 SWDW in Arbuckle in Kansas
- 3-5,000 BWPD common; some >10,000 BWPD, on a vacuum.
- 100 350 metric tons/day, (37 -130 k metric tons/yr)
- 50 -175 injection wells for the planned 850MW Sunflower plant
- 1-3 wells for a 55mgy ethanol plant

(CO2 properties at 110F and 1100psi – supercritical, 13.8 lbs/ft^3, and 0.22 gm/cc)

Storage space available

- A Single Example: Ellsworth anticline (saline aquifer)
- 126 square miles (6X21 mi)
- 100 ft of closure
- 15% porosity
- ➢ Sw = 100%
- Store 278 million metric tons supercritical displacement
- 66 million metric tons as dissolved gas

(Assumed 100F, 1200psi, TDS = 30,000 ppm) Carr, et al. (2005)

Volumetric estimates for storing CO2 in Arbuckle domes on CKU

Million Metric Tons

FIELD	DISC YR	CUM. OIL (mmbo)	CO2 REPLACE OIL	CO2 TO SPILL (~2.5X*)	Ka •
TRAPP	1929	308	11.9	29.8	
CHASE-SILICA	1929	280	10.8	27.0	•
BEMIS-SHUTTS	1928	261	10.1	25.3	
HALL-GURNEY	1931	160	6.2	15.5	
KRAFT-PRUSA	1937	137	5.3	13.3	
GORHAM	1926	98	3.8	9.5	
GENESEO-EDWARDS	1934	89	3.4	8.5	
		1,333	51.5	128.8	

Kansas:

- Total 72.8 Million Metric Tons/Year
- Electric Power 37.2
 Million Metric Tons/Year
- New Sunflower 895 MW plant deal – 6.7 million tons/yr (metric tons?)

* Assumptions: Cumulative oil is ~40% OOIP and 28% of pore volume, FVF = 1.1, Swi = 30%, final Sco₂ = 70% and reservoir is filled to spill point. CO2 properties at 110F and 1100psi – supercritical, 13.8 lbs/ft^3, and 0.22 gm/cc.

Theoretical CO2 storage volume in "depleted" Kansas oil and gas reservoirs

Filling only the space vacated by the hydrocarbon

OIL

Cumulative Production 6.3 Billion BO Reservoir Volume Reservoir Volume Tonnes CO2*

6.93 Billion bbls (FVF=1.1) 38.9 BCF 243 million tonnes

GAS

Cumulative Production 38.4 TCF Reservoir Volume Tonnes CO2**

1.12 TCF (Bq = 34.3)2,232 million tonnes

Assumes 110F and 1100 psi for average oil reservoir - CKU 13.8 lbs CO2 / ft^3 Assumes 100F and 500 psi for avarage gas reservoir - Hugoton 4.4 lbs CO2 / ft^3

Kansas:

- Total 72.8 Million Metric Tons/Year
- Electric Power 37.2 Million Metric Tons/Year
- New Sunflower 895 MW plant deal -6.7 million tons/yr (metric tons?)

Arbuckle as saline aquifer storage

Positives

- + Proven seal
- + Proven injection zone
- + Vast storage capacity
- + Fluid gradients working in our favor (Carr, et al., 2005)
- + Fluid velocities in aquifer are very slow (Jorgensen et al., 1993)

Negatives

- Much is below supercritical
- Existing wellbores may be problematic
- Best structures are still oil productive *

* But....what about concurrent EOR and CCS?

Reality of costs

Cost per Ton CO2 (\$)				
Capture	0 - 50	(pure vs. coal-power)		
Compression	15 - 20			
Transportation	0 - 20	(on site vs. distant)		
Injection & monitor	5 - 10			
\$20 - \$100 per ton				

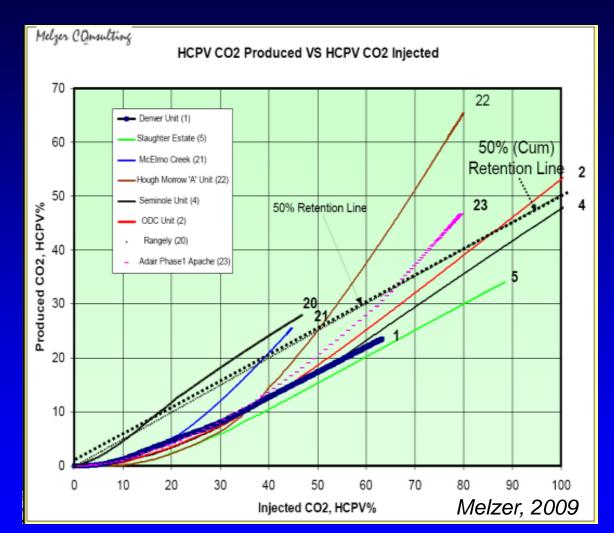
Present financial incentive to capture and store: \$0 - \$20*/ton

* \$20 tax credit for sequestration for large CO2 sources

Interim solution: "Green Oil"

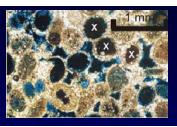
2.8 Barrels of oil recovered (\$200 gross value)

One ton CO2 permanently stored


Combust 2.8 Barrels of oil yields 1.1 tons CO2

CO2 Retention in EOR

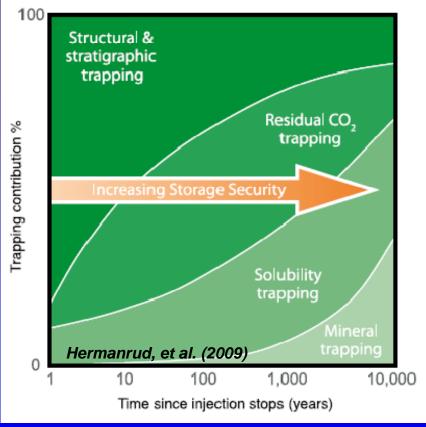
- Historically 50% of CO2 is retained in the reservoir
- The other 50% is captured, recycled and re-injected
- Eventually nearly all is stored, permanently (<5% loss over time)



* Excludes, refining, transportation CO2 costs

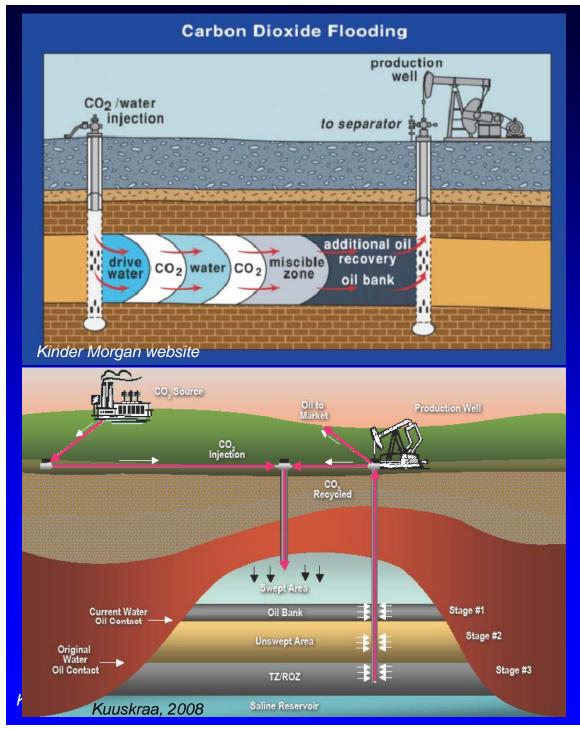
Long-lived CO2 EOR projects, mainly Permian basin

CO2 storage capacity and mode



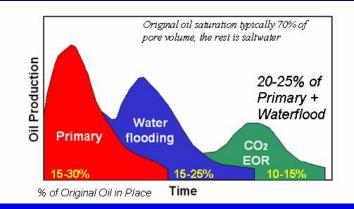
Amount of CO2 sequestered

depends on temperature, pressure, brine chemistry, hydrocarbon properties, rock chemistry, and pore throat diameters (capillary pressures)


Modes of storage

- 1. Displacement f(density) = f(P,T)
- 2. Residual saturation f(pores)
- 3. Solubility trapping* f(salinity, P, T)
- Mineralization f(mineralogy, T, brine)

State of CO2 stored is function of time


<u>* Noteworthy: Solubility of CO2 in oil is > than in Sw</u>

CO2 Processing Styles

Horizontal (piston) flood

- Application: Follow waterfloods
- KS targets: L-KC, Bartlesville, Morrow, Chester
- Well documented

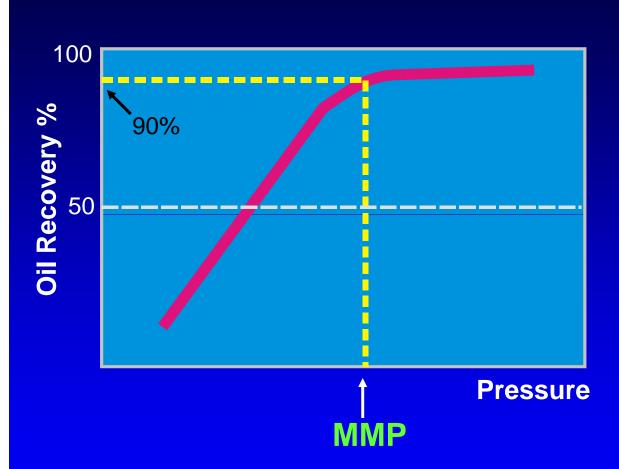
Gravity-stable flood

- Application: bottom-water drive reservoirs
- KS targets: Arbuckle, Simpson, Viola
- Fewer analogues

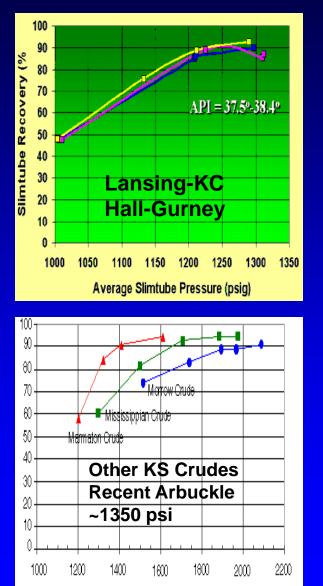
Technical Requirements

Miscible – piston displacement

- 1. Inject pressure > CO2 in supercritical state (>1073)
- 2. Inject pressure < frac pressure
- 3. Reservoir operating pressure
 > MMP (1200-2000 psi)
- 4. Adequate working pressure range (Frac pressure MMP)
- 5. Adequate Remaining OIP
- Reservoir conditions allowing contact throughout the reservoir (good waterflood)

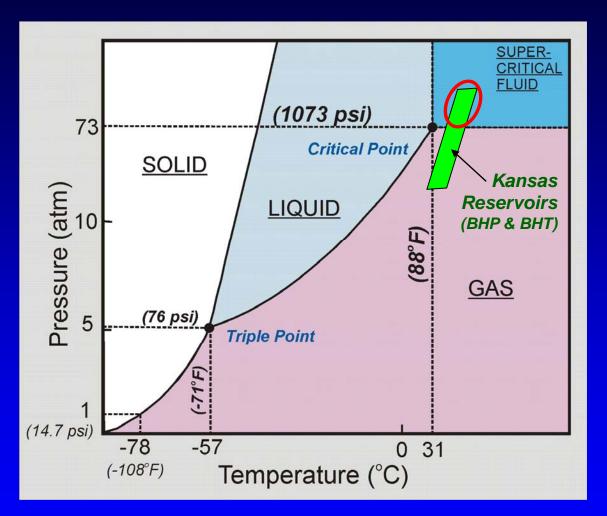

Miscible or near-miscible gravity-stable displacement

Same constraints.....


- Reservoir BHP above MMP for miscible (for bottomwater drive reservoirs)
- Reservoir conditions & wellbore configuration to build uniformly expanding CO2 gas cap

Minimum Miscibility Pressure

MMP's performed by TORP, KU

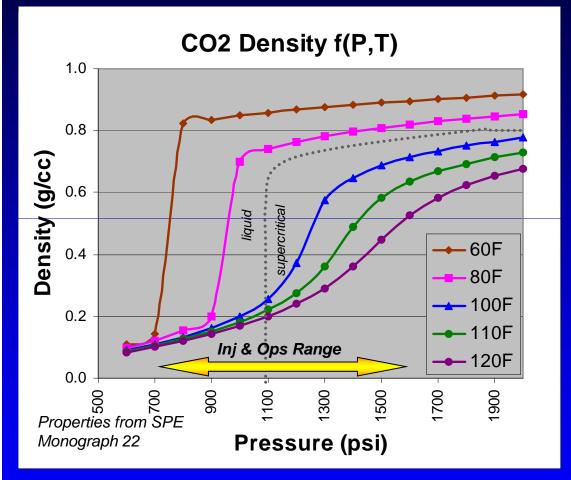


MMP = system pressure at which 90% of lease crude oil in sand-packed slim tube is recovered

Average Slimtube Pressure (psig)

CO2 Phase Diagram

Modified after Condren www.cbu.edu/~mcondren/CO2_phase_diagram.jpg

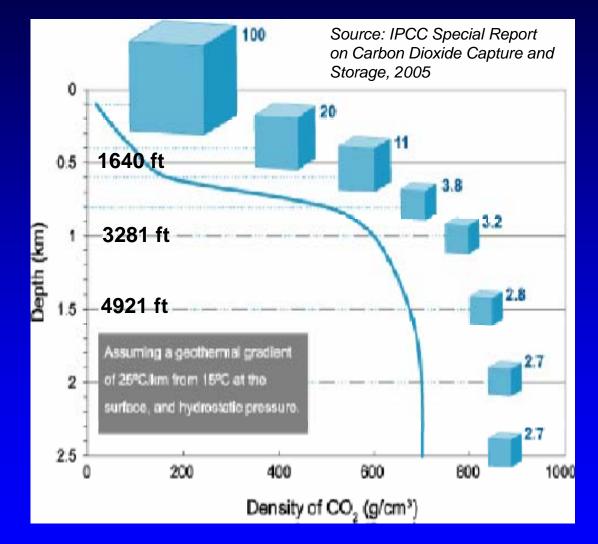

Miscible floods operate at

- supercritical (1073 psi)
- above MMP MMP (>1200 psi)

Kansas reservoir properties range:

- 400 psi, 85F at 1000 ft
- 1600 psi, 125 F at 6000 ft

CO2's operating requirements and reservoir constraints



Density and viscosity varies significantly from light liquid to heavy super-critical within the range of P & T for surface to BH

Target screen dimensions determined by pressure constraints (miscible)

- ✓ CO2 supercritical at >1073 psi
- MMP variable, >1200 psi and increases with BHT (depth)
- Frac pressure is upper limit to injection pressure
- High absolute maximum operating pressure range is desirable (Delta P = frac P – MMP)

CO2 volume with depth (P and T)

Relative volume for CO2 under "normal" pressure and temperature conditions. Kansas is under-pressured

Defining Kansas Resource Targets

- Pressure constraints (Miscible, Delta P could vary, but generally >300 psi)
- Shallowest ~2000 ft (BHP 800 psi)
- Can work at shallow depths: low BHT lowers MMP and improved frac P with pressured reservoir.
- Ideal miscible >4000 ft (BHP 1300 psi)

Process rate and uniformity

- Higher Delta P for higher process rate
- Low vertical heterogeneity and good later communication (good sweep efficiency demonstrated by good waterflood)

Large remaining oil in place

- "Critical mass" is required to justify non-oil field capital requirements
- High ROIP per-acre required to justify oil-field capital requirements
- Maximize return on capital

Gravity-stable targets

- High BHP preferred
- High gravity, lower MMP preferred
- Vertical permeability, layering, coning are complicating factors

CO_2 EOR impact in Kansas will be significant.... just how significant will be determined by future events.

- Carbon management legislation and laws (Cap & Trade)
- Geologic storage regulations (Federal and State)
- ✓ Kansas oil industry response

Plus the usual underlying fundamentals

- EOR resource base
- Oil price
- Favorable / unfavorable tax environment

Convergence

The CO2 landscape has changed dramatically over the past seven years at the state, regional, and federal level.

- 1. CO2 emissions is publicly accepted as a significant issue to be dealt with
- Looming carbon management legislation and laws (Cap & Trade) would be a game-changer
- 3. Geologic storage regulations are moving forward (Federal and State)
- 4. Pure CO2 sources increased 4X in Kansas (3 ethanol plants, 1 ammonia plant and 30 mmcfd to 10 ethanol plants, 2 ammonia plants 120 mmcfd)
- 5. Technical advancements in CO2 EOR expand targets (gravity-stable, shallower depths, drilling and completion)

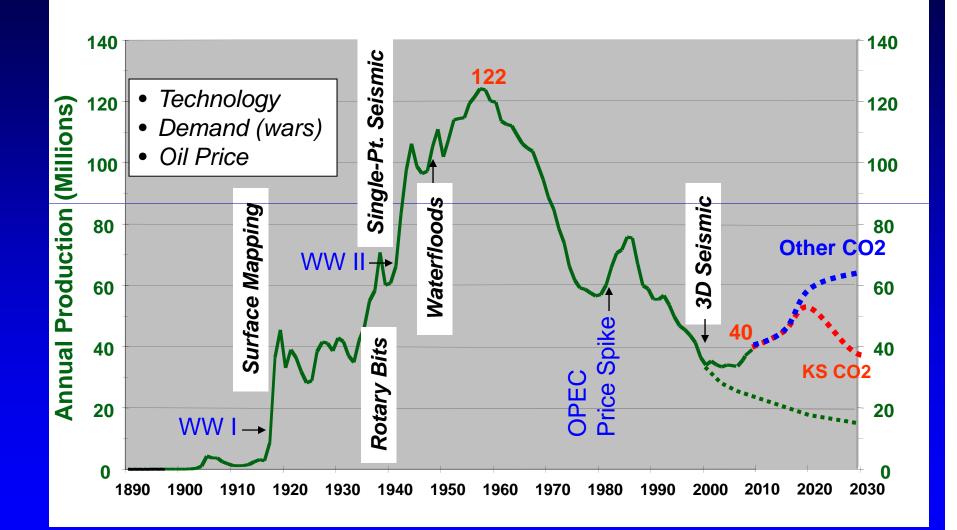
Potential CO2 EOR in Kansas

Kansas Cumulative to date: 20% of P&S: KGS upper end technically feasible Technically feasible (*ARI): More conservative view: Half of that:

* Kusskraa (ARI), 2006

6.3 Billion Barrels
1.2 Billion
600 Million
570 Million
200 Million
100 Million (2.5x annual)

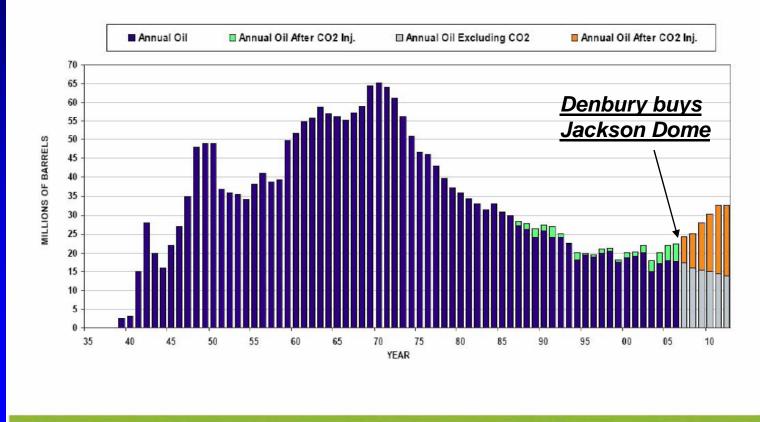
(even most conservative view is significant)


Costs for 100 million barrels CO2 EOR oil

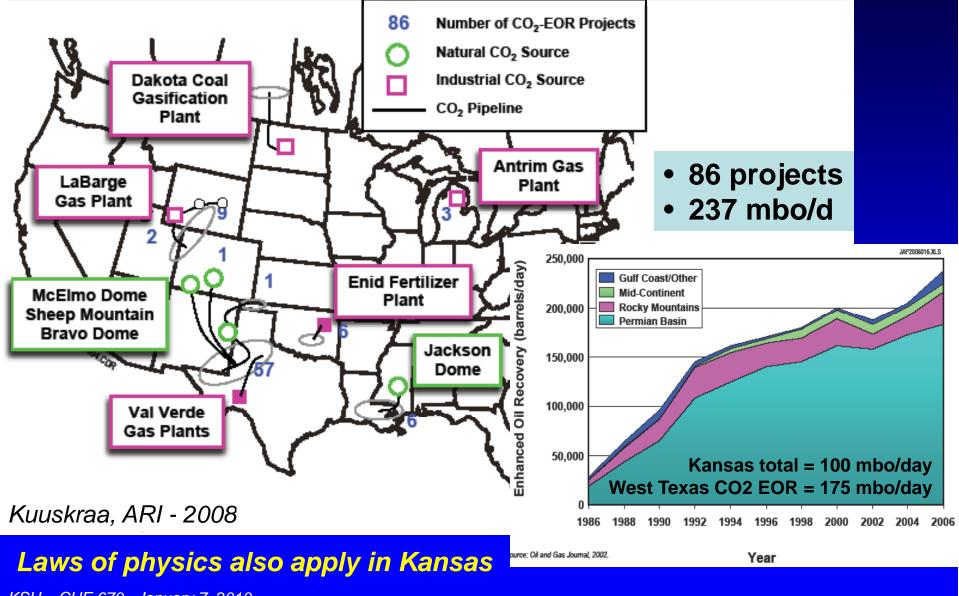
Capital costs in field CO2 costs** Operating costs Cost of Capital \$1 Billion
\$1 Billion
\$1 Billion
\$1 Billion
\$x Billion

* 1.5/mcf + 0.50/mcf recycle. N/G = 5/10.

Costs could vary significantly. Numbers are intended only for illustrating that significant investment is required.


Impact of Technology on Kansas Oil Production

Why not Kansas?


Mississippi Annual Oil Production

Total Cumulative Oil: 2.387 Billion Barrels (through 2006)

Denbury Resources Inc.

Why not Kansas?

Current CO2 Used for EOR

0	о т	CO2 Supply MMcfd**		
State/ Province (storage location)	Source Type (location)	Natural (Anthropogenic	
Texas-Utah-New Mexico- Oklahoma	Geologic (Colorado-New Mexico) Gas Processing (Texas)	1,700	110	
Colorado-Wyoming	Gas Processing (Wyoming)	-	340	
Mississippi	Geologic (Mississippi)	400	-	
Michigan	Ammonia Plant (Michigan)	-	15	
Oklahoma	Fertilizer Plant (Oklahoma)	-	35	
Saskatchewan	Coal Gasification (North Dakota)	-	145	
TOTAL		2,100	645	

* Source. 12th Annual CO2 Flooding Conference, Dec. 2006

Kuuskraa, ARI - 2008

** MMcfd of CO2 can be converted to million metric tons per year by first multiplying by 365 (days per year) and then dividing by 18.9 * 103 (Mcf per metric ton).

Kansas currently vents <u>**120 mmcfd</u>** of high purity CO2 from Ethanol and Fertilizer plants (EOR potential12-25 mbo/d)</u>

Kansas Strengths and Challenges for CO2 EOR CCS Development

Kansas strengths

- Significant oil resource base
- Well-defined, large sequestration targets
- CO2 sources: Local and regional
- Head start on regulatory framework
- Favorable relationships with research groups (TORP and KGS)
- Strong industry and professional groups (KIOGA, KGS (all of them), SPE)
- Long-standing intercompany relationships
- Skilled workforce

Challenges - Kansas

- Resource base needs to be validated
- High % of wells are plugged and many pose a risk to containment
- Resources are unconsolidated
- Missing CO2 EOR skill sets
- Capital
- Tendency to be late adopters

Challenges - Federal and State

- Philosophical and Regulatory hurdles (CCS vs. EOR)
- Regulatory framework still in developmental stage

Kansas Oil's next generation?

- 1. Recognize opportunity
- 2. Understand the challenges
- 3. Proactive in molding public acceptance and regulatory framework
- 4. Take the long view, *but* be early adopters
- 5. Willingness to collaborate and cooperate

END