Fate and Transport of Chemicals

A Presentation by
Terrie Boguski
Technical Outreach Services for Communities
(TOSC)

Great Plains/Rocky Mountain Hazardous Substance Research Center

What Happens when Chemicals Spill?

- volatilize into the air
- stick to the soil
- run off into streams or lakes
- percolate down through the soil
 - float on the water table
 - sink under the aquifer
 - dissolve in the groundwater
- destroyed by bacteria

Volatilization

- When chemicals volatilize into the air the concentrations may become dilute enough to cause no harm.
- Risk depends on the concentration of exposure and the type of chemical

Volatilization

When chemicals in soil volatilize into the air people in nearby structures may be affected by increasing concentrations

Soil Contamination

 When toxic chemicals remain in the soil contact with the soil may be harmful to people

Runoff

 Chemicals that run off into streams, lakes or the ocean may harm wildlife or contaminate drinking water

Groundwater Contamination

- Chemicals may move through the soil and dissolve in groundwater
- People using groundwater for drinking may be at risk

What Determines How Chemicals Move?

- Nature of the chemical
 - some chemicals react
 with soil material and
 precipitate
 (become solid)
 - some react and become more mobile
 - some are more easily degraded in the environment
 - some dissolve in water

- Hydrologic cycle
 - climate and the water cycle influence how chemicals are carried through the environment
 - » precipitation
 - » depth to groundwater
 - » rate of groundwater flow

What Determines How Chemicals Move?

Geology

- layers and areas of higher and lower permeability
 - » clay and unfractured rock are less permeable
 - » gravel and sand are more permeable

- Amount of organic material in the soil
 - certain chemicals tend to stick to organic material and don't move so quickly or so far

Trichloroethylene (TCE)

- high volatility—volatilizes easily in air
 - remediation sometimes consists of bubbling air through TCE contaminated water
 - » in-well vapor extraction
 - » pump and treat with air stripping
- low solubility— dissolves slowly in water
 - free product tends to pool in the subsurface and then slowly dissolve into groundwater
 - may provide a continuous source of contamination
 over a long time period

TCE

biodegrades anaerobically

- bacteria that live without oxygen can break down TCE while living on other nutrients in the soil
- breaks down into cis-DCE or trans-DCE, then into vinyl chloride (VC) in a very slow step-wise fashion when conditions are right
- sometimes see build up of VC at older sites

Risk only Exists if...

1.Contaminants exist

2.Concentrations are high enough

4. There are receptors(people, animals sensitive ecosystem)

Exposure Pathways

- Inhalation
- Ingestion of soil and groundwater
- Absorption through skin

How to exclude pathways

- Institutional Controls
 - restrict land use, prohibit drinking water wells
- Engineered Barriers
 - parking lots, clean soil cover, clay or man-made caps, barrier walls
- Control Activities
 - groundwater pumping
 - » to prevent groundwater from contacting contaminated soil or to prevent migration of groundwater

Risk Management

- Goal Reduce concentrations at point of exposure to acceptable levels by...
 - Source removal
 - » removing contaminated soil from the site
 - Treatment and containment
 - » treating and containing soil in monitored landfill
 - Elimination of exposure pathways
 - » engineering and/or institutional controls

