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ACCURATE NUMERICAL SIMULATION OF
BIOBARRIER FORMATION IN POROUS
MEDIA

B.M. Chen and H.V. Kojouharov

Department of Mathematics, University of Wyoming, P.O. Box 3036, Laramie, WY
82071-3036

Biofilm-forming microbes have complex effects on the flow properties of natural porous media. Subsur-
face biofilms have the potential for biotransformation of organic contaminants to less harmful forms, and also to
form biobarriers to inhibit contaminant migration in groundwater.

To describe the population distribution and movement of bacteria in porous media, we consider the
convection-dispersion equation with nonlinear reactions. The reactive solute transport equation is one for which
numerical solution procedures continue to exhibit significant limitations. Accurate numerical simulations are
crucial to the development of contaminant remediation strategies.

A new �exact� numerical method is developed for simulation of reactive bacterial transport in porous
media that leads to solutions free from numerical instabilities. Applications to different biofilm models are
examined and numerical results are presented to demonstrate the performance of the proposed non-standard
numerical approach.

INTRODUCTION

In situ biorestoration techniques are a promising approach for the successful cleanup of

contaminated aquifers. One such technology is the creation of biobarriers for containment and

remediation of soil and groundwater contaminated with organics and heavy metals. Biobarriers are

in situ barriers that are formed by stimulating growth of biofilm-forming microbes introduced into

the subsurface (James et al., 1995). Microbial biomass plugs the free-pore-space flow paths

through porous media, thereby reducing the hydraulic conductivity and mass transport properties.

Selective plugging of permeable strata may be used for preventing migration of groundwater con-

taminants from hazardous waste sites. In addition, biobarriers may be capable of simultaneously

degrading and containing a contaminant plume. Simple nutritional differences may be used to deliver

bacteria to any location in the subsurface environment.

The objectives of our research work are to develop mathematical models for flow, transport,

and biofilm accumulation in porous media; to develop reliable, accurate, and efficient numerical

methods for the given models; and to apply the methods to subsurface biobarrier formation. The

outline of the paper is as follows. The governing system of partial differential equations is formulated

for a two-phase, four-species mixture. In the next section, standard numerical techniques are

presented for solving the equations governing the fluid flow and solute transport in porous media.

The new �exact� numerical method for simulation of reactive bacterial transport in porous media is

developed in Section 4. To demonstrate the performance of the proposed new method and the

effectiveness of microbial biobarriers for reducing the hydraulic conductivity, numerical results are
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presented in Section 5. In the last section, summary of results and future research directions are

outlined.

GOVERNING SYSTEM OF EQUATIONS

In many practical cases of flow of liquids, the variation in density of the liquid may be ignored.

In such cases the liquid is said to be incompressible (Currie, 1993), which means that as a given

mass of liquid is followed, its density remains constant. For the case of homogeneous, incompress-

ible liquids, the equation governing transient fluid flows in saturated porous media can be written in

the form (Allen, 1988):
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Here, h(x,t) denotes the hydraulic head; S
s
 is the specific storage; K is the saturated hydraulic

conductivity; and f(x,t) represent sources or sinks.

The transport of microbes and nutrients is governed by the partial differential equations:
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respectively. Here c
i
, i=M, N, represents the mass concentration of species i per unit volume of the

liquid phase. For single-fluid flow, the quantity φ  is usually identified as the porosity of the rock

matrix, D
i
(x,t); i = M, N is the hydrodynamic dispersion coefficient; and $Ri

, i = M, N is the retar-

dation factor accounting for linear equilibrium sorption. The pore water velocity v(x,t), called

superficial or Darcy velocity, represents the speed of the moving front.

We assume that the solid rock matrix is stationary and that the diffusion of microbial and

nutrient species in the solid phase is negligible. The rate of biofilm growth is given by the Monod

kinetics reactions:

µ
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max (3)

where µ max  is the maximum specific growth rate, and K
s
 is that value of the concentration of

nutrients c
N
  where the specific growth rate µ (c

N
) has half its maximum value (Bailey and Ollis,

1986). Also, the microbial death rate is assumed to be proportional to the size of the biofilm popu-

lation.
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Invoking all simplifying assumptions to equations (2) gives the final form of the governing

system of differential equations
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where k
r
 is the first-order endogenous decay rate.

NUMERICAL SOLUTION STRATEGY

Equations (4) represent a coupled system of nonlinear, time-dependent partial differential

equations that is very difficult to solve numerically. A key objective of the numerical simulation is to

develop time-stepping procedures that are reliable, accurate, and computationally stable. One

possible time-stepping approach is the sequential solution technique (Russell and Wheeler, 1983).

The nonlinear partial differential system is decoupled at each time step using a linearization technique

and each equation is solved implicitly at the current time step (Ewing and Russell, 1982). This allows

multiple concentration time steps for each head time step.

Mixed Finite-Element Methods for the Flow Equation

Classical techniques for solving the fluid flow equation (1)
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include the standard finite difference and Galerkin finite-element methods, applied on uniform spatial

grids. The resulting linear algebraic systems are symmetric and positive definite, so one can solve for

the approximate hydreaulic head $h  using a variety of iterative numerical schemes. Having computed

$h , one can differentiate numerically to obtain the velocity

$ ( , )
$

.v K x t
h

x
= − ∂

∂

A major problem with those approaches is that the approximate velocity $v  is one order lower

in spatial accuracy than the approximate hydraulic head. In groundwater contaminant hydrology,

inaccurate velocities are of serious concern, since the hydraulic head appears in the species concen-

tration equations (2) only through its velocity field.

(5)

(6)



Proceedings of the 1998 Conference on Hazardous Waste Research 227

To overcome these difficulties, it is more appropriate to choose a numerical method that

approximates the velocity field v directly, such as the mixed finite-element method or cell-centered

finite differences in space (Allen and Wang, 1994). Mixed finite-element methods use a different

discretization approach than the classical numerical methods.

The single fluid-flow equation (1) arises from the mass balance law
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we substitute for the groundwater velocity v using the Darcy�s law
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h
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Here, one solves simultaneously the mass balance and Darcy�s laws. The corresponding mixed

finite-element method for solving the first-order system (5)-(6) is as follows: Find a pair
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Û and $Q  are finite-dimensional subspaces of given Hilbert spaces U and Q , respectively (Allen et

al., 1992).

Among the simplest choices for subspaces are the lowest-order Raviart-Thomas spaces

(Raviart and Thomas, 1977) on uniform grids, where the �hydraulic head� space $Q  consists of

piecewise-constant functions and the �velocity space�  Û is the space of functions that are

piecewise-linear with respect to the uniform grid on Ω . The scheme exhibits good convergence

properties in the presence of fine spatial grids and effectively handles variable coefficients K (Allen

et al., 1992).

Standard Methods for Transport Equations

Consider the equations governing transient species transport in porous media (2) in the follow-

ing non-dimensional form:
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Here, c is the species concentration; v is the barycentric velocity of the mixture; D is the hydrody-

namic dispersion tensor; and R(c) is the total production rate via reactions and sources.

(8)
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While classical techniques, such as standard finite-differences or Galerkin finite-elements, work

well for problems of species transport that are dominated by dispersive movement, they suffer from

severe nonphysical oscillations and excessive numerical dispersion when convection, associated with

the velocity field v, dominates the dispersive effects. Equation (8) is a parabolic-type partial differ-

ential equation which changes to hyperbolic if the hydrodynamic dispersion coefficient D is set to

zero. Therefore, it is logical to design numerical procedures that recognize the hyperbolic nature of

the convection-dominated solute transport problems. Many such schemes have been developed that

incorporate ideas from the modified method of characteristics (MMOC) (Douglas and Russell,

1982) and the Eulerian-Lagrangian localized adjoint method (ELLAM) (Celia et al., 1990). In

ELLAM, it can be difficult to evaluate the resulting integrals, in contrast with the MMOC which is

relatively easy to implement but does not hold local mass balance of the system. In recent years,

several MMOC-based local mass conservative schemes have been developed but still little has

been done to improve the numerical solutions of problems in which nonlinear reactions are present.

NON-STANDARD METHODS FOR TRANSPORT EQUATIONS

Nonlinear reaction terms play a significant role in applications involving bacterial growth and

contaminant biodegradation in subsurface regions.

We propose a new Eulerian-Lagrangian numerical method for solving the reactive solute

transport equation (8):
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numerical solution of the convection-reaction part of Equation (9) is defined using an �exact�

time-stepping scheme. This enables us to follow the transport and track sharp fronts much more

accurately than with the standard numerical schemes. Having dealt with the most difficult part of the

transport problem, only the smoothing property of the dispersion term remains. Then, standard finite

differences or finite elements are well suited for solving the dispersion part.

�Exact� Time-Stepping Scheme

Our goal in this section is to construct such an �exact� time-stepping  scheme for the

convection-reaction part of Equation (9):
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subject to the initial condition c(x,0) = f(x), where f is a given function.

To introduce the concept of �exact� time-stepping schemes, let us consider the following

numerical scheme:

C x C x t mm m( ) ( ( ), , ),= −F    1 ∆
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where ∆t  is the time-step size and Cm(x) is the numerical solution at time m t∆ . Assume that it has a

solution
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The numerical scheme is said to be an �exact� time-stepping scheme if the relationship

C x c x m tm ( ) ( , )= ∆  holds for arbitrary time-step size ∆t  and at every spatial location x (Mitchell

and Griffiths, 1980).

As a first case, consider the dimensionless logistic growth equation (Murray, 1993)

(11)

Here, the parameter λ  is a positive constant, and the species concentration c(x,t) ranges in the

interval [0,1].

The nonlinear partial differential equation (11) can be easily solved using the method of

characteristics (John, 1991). The general solution assumes the form
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Equation (13) is given by the expression
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Based on comparison of the analytical solution (14) at time t with the analytical solution at time

t t+ ∆ , we construct the �exact� time-stepping scheme (Kojouharov and Chen, 1998) for solving

Equation (11):
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where the backtrack point x m has the following expression
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The left-hand side of the numerical scheme (15) can be viewed as a non-standard backward

difference approximation of the characteristic derivative

while the right-hand side represents a nonlocal modeling of the nonlinear reaction term

R c c c( ) ( )= −λ 1 . Another distinctive feature of the �exact� time-stepping scheme (15) is the more

complicated denominator function
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As a second case, consider the dispersion-free system of dimensionless differential equations

governing the transport of microbes and nutrients in an incompressible porous media (Huyakorn and

Pinder, 1983):
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Similar to the case of logistic growth reaction terms, we can construct the new �exact�

time-stepping scheme for the microbial transport equation (17)
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The �exact� time-stepping scheme for solving the nutrients transport equation:
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More details on the derivation of �exact� time-stepping schemes for species transport equa-

tions with first-order reactions and a variety of nonlinear reaction terms are given in Kojouharov and

Chen (1998).

Dispersive Solute Transport Equations

Without loss of generality, we confine our discussion to the development of the non-standard

method for solving the dimensionless differential equation governing the transport of microbes in an

incompressible porous medium
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Applying the �exact� time-stepping scheme (18) to Equation (20) yields the following implicit-in-

nature, semi-discrete procedure
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To complete the construction of the new non-standard method, we need to introduce an approxi-

mation technique for discretizing the spatial derivatives involved in (21).

Let us consider the centered, weighted second difference approximation of the dispersion term

(Huyakorn and Pinder, 1983):
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1

 is the hydrodynamic dispersion coefficient located at the center of a space increment

and ∆x  is the spatial grid size. The finite element method can be used as successfully as the finite
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difference method; however, we shall not present it here since the general idea of constructing the

non-standard method is the same.

Combining the semi-discrete procedure (21) with the above spatial approximation of the

dispersion term yields the new non-standard method for solving the microbial transport equation

(20)
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denotes the finite difference approximation (22). Here, CM
m

i

+1 is the approximate value of the micro-

bial concentration c
M
 (x,t) at the grid point xi at the advanced time level (m+1), and the backtrack

point xi
m  has the expression
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Similarly, the non-standard method for solving the differential equation governing the transport

of nutrients in an incompressible porous media:
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is given by the expression
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NUMERICAL RESULTS

We now turn to a set of numerical experiments to demonstrate the performance of the pro-

posed new method and the effectiveness of microbial barriers for reducing the hydraulic conductiv-

ity.
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The governing system of equations (4) examined here has the following form:

− 





=

− 





=
+

−

+ − 





= −
+

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

µ

∂
∂

∂
∂

∂
∂

∂
∂

µ

x
K

h

x
f

x
D

c

x

c

K c
c k c

v
c

x x
D

c

x Y

c

K c
c

M
M N

s N
M r M

N
N

N N

s N
M

,

,

,

(fliud flow)

c

t
(microbes)

c

t
(nutrients)

M max

N max1

(25)

where h is the hydraulic head; c
M
  is the biofilm density; and c

N
  is the nutrients concentration.

Assumptions made in the above mathematical model (25) are that all bacteria are attached to the

rock surface, as a part of the biofilm structure, and that the concentration of nutrients present in the

solid phase is negligible.

Two numerical simulations are carried out with the non-standard �exact� method. Dimension-

less model parameters of the correct magnitude are chosen as mesh size ∆x = 0 01. , time-step size

∆t = 0 02. , dispersion coefficients D
M
= 0.0002 and D

N
= 0.003, source term f=0.01, and initial

hydraulic conductivity K = 0.015. We consider a spatial domain Ω = [0, 1], and assume that

h=50 at x=0, and h=0 at x=1. No endogenous respiration is used and the Monod kinetics coeffi-

cients are taken as µ max = 0 05. , K
s
 = 0.32, and Y = 0.16. The initial biofilm distribution is repre-

sented by the �cutoff� Gaussian hill centered at x
0
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where x
0
= 0.2 and s= 800.

In the first numerical experiment, the initial nutrients distribution

(26)
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0.4,

corresponds to a nutrients saturation of c
N
 = 0.4 that is subsequently increased to c

N
 = 0.5 at the left

end of the porous media domain Ω . Results for this problem, after 800 time-step iterations, are

shown in Figure 1. The initial conditions are given in dotted lines (...), and the numerical solutions in

dashed (_ _) and solid (___) lines. Figure 1 demonstrates the ability of the non-standard method to

model convection-dominated nutrients transport without distorting sharp concentration fronts

(Kojouharov and Chen, 1998).

The potential of microbial biobarriers for reducing the hydraulic conductivity is demonstrated in

Figure 2. A relative increase of 23% in the biofilm density, after 500 time-step iterations, results in a
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corresponding decrease in the hydraulic conductivity of about 40 %.

In the second numerical experiment, we consider the �step-function� type initial nutrients

distribution:

c x
x
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.
,0
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0.4,

which corresponds to a subsequent increase of the initial nutrients saturation from c
N
 = 0.4 to c

N
 =

0.8 (Figure 3). The 60 % increase in the nutrients concentration, with respect to the first numerical

experiment, results in a much bigger growth rate of the biofilm-forming microbes. Figure 4 shows

the 50% reduction in the hydraulic conductivity, after 500 time-step iterations, due to the 33%

decrease in the biofilm density.

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Non-standard numerical methods have been developed for solving one-dimensional, transient

convective-dispersive transport equations with nonlinear reactions. Large time steps can be taken

without affecting the accuracy of the numerical solution. The appropriate time-step size for a par-

ticular model problem can be determined by physical considerations, rather than stability, conver-

gence, or consistency reasons.

The proposed new methods have been successfully applied to biobarrier formation models

incorporating Monod kinetics reactions. Numerical results confirmed the theoretical and experimen-

tal predictions that microbial barriers are effective for manipulating the porous media properties in

general, and for reducing the hydraulic conductivity and mass transport in particular.

There are currently two research directions that we are pursuing. Our main effort is to extend

the ideas of the �exact� time-stepping scheme to multi-dimensional reactive solute transport prob-

lems. The second research direction is toward an improved treatment of spatial derivatives in the

dispersion term. Comparison with experimental results obtained from the Montana State�s Center

for Biofilm Engineering for validation and calibration of the developed mathematical models is in

progress.
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Figure 1.  Numerical solutions generated by the non-standard method for the biofilm density (___)
and the nutrients concentration (_ _) after 800 time-step iterations. The dotted lines (...) are the
initial biofilm and nutrients distributions.
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Figure 2.  Effectiveness of the microbial barriers for reducing the hydraulic conductivity.
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Figure 3. Numerical solutions generated by the non-standard method for the biofilm density (___)
and the nutrients concentration (_ _) after 550 time-step iterations. The dotted lines (...) are the
initial biofilm and nutrients distributions.
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Figure 4.  Effectiveness of the microbial barriers for reducing the hydraulic conductivity.


